Distributed, Networked Surgical Simulation: Opportunities for Standardization and Interoperability

Kevin Montgomery PhD
Surgical Simulation Benefits

- Broader training: Easily provide different scenarios
 - Anatomical variations (gender, age)
 - Pathologies (diseases, trauma)
 - Operating environments (ER, battlefield, space)
- Objective quantification of performance:
 - Simulate results
 - Certification
- Accelerated acquisition of baseline skills
- No risk to real patients
The Idealistic Goal

- Let’s all work together on a common framework of shared code
 - Less time to realization of a working simulator
 - Shared individual expertise/contribution
 - Barrier to entry, deployment, and proliferation lessened
 - Accelerate the production and adoption of simulators
 - Realize the benefits of surgical simulation sooner
Overview

- Describe mass-spring physical simulation system built over past 6 years: Spring
- Features:
 - **Platform**: (Sun, SGI, PC, Linux), C++/OpenGL, Parallelized
 - **Models**: Relatively easy introduction of patient-specific anatomy
 - **Simulation**: Soft tissue modeling, rigid body dynamics
 - **Interfaces**: Many devices, multi-user, multi-instrument
 - **Haptics**: networked, latency dependent or independent
 - **Instruments**: many surgical/ nonsurgical produced
 - **Collision Detection/ Response**: BSP-tree with enhancements
 - **Display**: stereo CRT, HMDs, projection, anything
 - **Misc**: Voice I/ O, video input, stereo, replicated display (image, geom)
- Applications: Produced during development
- Emphasis on real-time (haptic rate) performance and generality
System Overview

- Haptic Device/User
- Haptic Device Controller
- Simulation Engine
- TCP/IP
- Proprietary
Simulation Architecture

- Sensor
 - Sensor Array
 - Node Array
 - Edge Array
 - Face Array
 - Tetra Array
- Object
- Spring
- Bounding Sphere
- Internet
 - Bird
 - uScribe
 - Polhemus
 - Net I/O
- LapIE
- 3GM
- PHaNToM
- Cyberglove
- Display Replicator
- Voice I/O
- Node
- Edge
- Face
- Tetra
- Node Array
- Edge Array
- Face Array
- Tetra Array
Areas for Standardization

- **Data:**
 - “Your liver in my abdomen”

- **Simulator:**
 - Open source simulation engines with standard APIs & Code sharing
 - Standard methods for tool-tissue interaction - predictable

- **Devices:**
 - Standard tracker/haptic device interfaces

- **Network protocols:**
 - Networked Haptics protocol
 - Distributed rendering protocol
 - Streaming video protocol (MJPEG)
 - Voice control protocol
Soapbox

- Best standards are those borne from real-world implementation. Otherwise:
 - Unimplementable standards
 - Standards glut (so many to choose from!)
 - Standards churning/turnover
 - *De facto* wins over *de juris*

- Standards must be produced at the right time (not too early, not too late)
Summary

- Open our kimonos (and code) now
- Work together
- Establish interfaces
- Learn a lot about what works and doesn’t
- Then - useful, independent/open, 3D standards are coming